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Our Sun is one of the most resourceful candidates for
providing evidence to direct scattering and accumulation
of galactic dark matter. In this work, we explore the
scattering between incoming galactic dark matter in
both theoretical and computational approaches. We
focus on the regime of DM particles scatter through the
stellar particle medium. We also investigate heavy dark
matter in particular, simulating the dark matter capture
process using Monte-Carlo simulations with adaptations
of FORTRAN package swifter to Python.

Source code: https://github.com/kittenK531/
starcode.git

I. INTRODUCTION

A usual approach to investigating known interactions
between particles is by learning about the Lagrangian
of the field and interactions. It remains an open ques-
tion to particle physicists about where the well-developed
boundaries lie upon all proposed models of dark matter.
Understanding the particle nature opens up a new sector
for Beyond Standard Model physics[1].

The first results of the direct detection of dark mat-
ter from LUX-ZEPLIN (LZ) have just been released[2].
Physicists have been putting a tremendous amount of ef-
fort into finding significant observable signatures for the
detection of dark matter of specific predicted interactions
from the Earth. Efforts in finding dark matter also by col-
lider production is also another direct detection method
in recent years[3]. It is, however, unfortunate that the
terrestrial environment does not have a rich population
of dark matter compared to galactic objects with long
durations to have accumulated dark matter.

The most abundant population of dark matter is the
large-scale gravitational structures accessed by astro-
physical and cosmological observations. Where gravita-
tional interactions in space provide us with a large sam-
ple of evidence to catch, and the limits only live within
precision controls in the laboratories.

It is thus encouraging for physicists to probe the stellar
environment for closer and larger stellar objects, which
has been existing for billions of years and allow an abun-
dant amount of dark matter to be captured and thermal-
ized. Looking at closer stars lowers the bar to looking
into signature observations when it comes to highly sen-
sitive measurements, and removes the need to denoising
the statistical background for observing far-away stars.

Without a fair estimation of dark matter profile in
stars, it is rather hard to predict results from theoret-
ical models, and the constraints on the detections cannot

be anchored with confidence. But knowing how long the
stars have been around helps physicists to make estima-
tions for the amount of dark matter being trapped in
the star, which also means it has accumulated a certain
amount of dark matter to interact and be observed.
Many theoretical works of different proposed models

have done estimations for respective capture rates, how-
ever, since there are no direct and certain conclusions
from detections that can confirm the interaction between
dark matter and other fields, it appears that the real-
ity is more complex than the expectations of theoretical
works. So our approach to starting to investigate dark
matter capture is by simulating dark matter scatters tra-
jectories with the limited interactions we can confirm,
gravitational attraction.

II. A THEORETICAL REVIEW OF THE
MULTI-SCATTERING PROBLEM

This part reviews and derives the main quantities to
be studied for the multi-scattering problem of incoming
DM particles to the stellar mass. Cross-referencing the
expressions from recent literature to set a solid founda-
tion before carrying out the numerical Monte Carlo sim-
ulation for tracing scattering processes of DM. Here we
introduce the scattering picture in two limits, the DM
scattering with stellar fluid and stellar particles. We will
discuss the fluid limit in brief under this section for the
sake of completeness. We will have a more detailed and
robust discussion on the particle regime in the next sec-
tion, which is more significant to our simulation regarding
the multi-scattering of the DM particle.

A. Classical scattering in different limits

The kinetic theory illustrates collisions between DM
particles in a medium in simple language. Using the
mean free path or average distance to describe collisions
between medium molecules of different regimes is a fair
approach.
The mean free path denoted as ℓχ can be character-

ized by the cross-sectional area[4][5] for collision in the
medium.
Say a medium as above only contains one type of iden-

tical target mass mi, that it contains total mass M s.t.

M = Nmi

where N is the total number of target mass.
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FIG. 1: Volume of medium crossed by cross-sectional
area

In order to estimate the mean free path, it is essential
to find out the number density of the target stellar mass.

ni =
N

V
=

M

mi

1

V
=

ρi
mi

Recalling the mean free path refers to the distance of
particle traveled without change of direction.

ℓχ ≈ length of path

number of collisions

The number of collisions is approximately the same
as the number of target mass inside the medium in the
volume shown in the previous diagram.[6]

ℓχ ≈ v∆t

(σc × v∆t)ni
=

1

niσc
(1)

B. Classification of regimes

The quantity Knudsen number Kn (alternatively the
optical depth τ⋆) is defined as follows

Kn ≡ ℓχ
2R⋆

≡ 1

τ⋆
(2)

This is visually equivalence to having a cross-section of
the star and estimating the number of collisions, to esti-
mate the number density of the content (target mass) in
the star.

2R⋆
ℓχ

FIG. 2: Cross-sectional area of a spherical star with
mean free path (Not to scale)

Considering the optical depth of DM particle, refers to
how far the DM particle can see without bumping into
or scattering from the molecules through the star. The
smaller number of the mean free path that can fit into
the diameter, implies the farther the DM particle can
”see”. And therefore, is more dilute, also requiring a
larger number of Kn.

According to the article, Knudsen numbers below
Kn ≲ 10−2 in a 75% hydrogen Population III star (as-
suming the target nuclei to be protons), corresponds

to cross-sections σc ≳ 10−34cm2, regarded as the fluid
regime. On the other hand, the Knudsen numbers
Kn ≳ 1 corresponds to cross-sections σc ≲ 10−36cm−2,
regarded as particle regime.

C. The Fluid Regime

From the previous sections, the average change in ki-
netic energy per distance traveled between scattering
events ℓχ is given as

∆E

ℓχ
= niσc∆E. (3)

In the fluid limit, it is relatively opaque to the DM
particle, where ℓχ ≪ R⋆ and Kn → 0, under the scale
of R⋆, consider energy along the scattering path, that is
demonstrated in the figure as follows.

E(∆x = 0)

E(∆x = ℓχ)

FIG. 3: Energy as a function of position in a head-on
collision under classical approach (Not to scale)

Making use of Equation (3), for the third equality, the
energy change per average scattering event distance is as
follows

∆E

ℓχ
=

E(x0 + ℓχ)− E(x0)

ℓχ
≈ dE

dx
∼ ρi

mi
σc∆E. (4)

By requiring, ∆E = ∆T which implies the micro-
scopic potential energy (intermolecular potential energy)
remains the same.

III. MULTI-SCATTERING IN THE PARTICLE
REGIME

In order to study the scattering for each encounter of
dark matter particles to the baryonic stellar mass, we aim
to trace consecutive classical scatterings with analytical
methods. This problem is equivalent to studying the non-
relativistic scattering between heavy cold dark matter
and stellar mass.
To obtain the general expressions for the change of en-

ergy between consecutive collisions, the recoil velocity of
dark matter becomes important. A simple elastic scat-
tering condition was imposed to get the recoil velocity of
dark matter in terms of initial condition parameters. By
boosting any two-particle scattering frame to the center-
of-mass frame, general analytical expressions are shown
in detail.
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A. Non-relativistic kinematics in COM frame

Considering the only two scattering bodies, we can
choose a particular frame s.t. both incoming particles
align on the y-axis.

p⃗χ,i p⃗t,i

p⃗t,f

p⃗χ,f

Θ

Θ

FIG. 4: Single classical scattering in center of mass
frame

We further define the momenta of particles by the la-
beled schematic diagram above in Fig. 4, as the following
expressions.

p⃗χ,i = Mvcm,i

(
0 , 1 , 0

)
p⃗χ,f = Mvcm,f

(
0 ,− cosΘ ,− sinΘ

)
p⃗t,i = mVcm,i

(
0 ,−1 , 0

)
p⃗t,f = mVcm,f

(
0 , cosΘ , sinΘ

)
Imposing the elastic scattering condition,

|p⃗χ,i|2

2M
+

|p⃗t,i|2

2m
=

|p⃗χ,f |2

2M
+

|p⃗t,f |2

2m
(5)

⇒ M
(
v2cm,i − v2cm,f

)
= −m

(
V 2
cm,i − V 2

cm,f

)
(6)

With momentum conservation,

(Mvcm,i −mVcm,i)
(
0 , 1 , 0

)
= (−Mvcm,f +mVcm,f )

(
0 , cosΘ , sinΘ

)
By the center of mass, the initial momentum is zero

implied Mvcm,i −mVcm,i = 0. We further seek relations
of the final momenta by using the zero initial momenta
condition.

From the previous equation, the y-components showed

Mvcm,i −mVcm,i = (−Mvcm,f +mVcm,f ) cosΘ

−Mvcm,f +mVcm,f = 0

, giving rise to

Mvcm,f = mVcm,f . (7)

Putting this condition to equation (5),(
M +m

(
M

m

)2

m

)
v2cm,i =

(
M +m

(
M

m

)2
)
v2cm,f

yields

|vcm,i| = |vcm,f | (8)

The total energy in the COM frame is

Ecm =
1

2
Mv2cm,i +

1

2
mV 2

cm,i =
1

2

(
M +

M2

m

)
v2cm,i (9)

B. Non-relativistic kinematics in stellar rest frame

By boosting back to the stellar lab frame, the COM
velocity is found to be

Ṙ =
Mvi +mVi

M +m
(10)

The energy in the lab frame, denoted with subscript ∗,
is found as

E∗ = Ecm +
1

2
(M +m) |Ṙ|2

1

2
Mv2i +

1

2
mV 2

i =
1

2

(
M +

M2

m

)
v2cm,i +

1

2
(M +m) |Ṙ|2

Hence, it is possible to express the initial velocity of the
incoming dark matter particle in the COM frame as

vcm,i =
µ

M

√
v2i + V 2

i = vcm,f , (11)

which is of the same magnitude as the final velocity of
the dark matter particle.
With the final COM frame velocity defined as

vcm,f = vf − Ṙ, (12)

the final velocity in the lab frame is found as

vf =
µ

M

√
v2i + V 2

i

(
0 , cosΘ , sinΘ

)
+ Ṙ (13)

Plugging in equation (10), and the squared modulus gives
the final energy in lab frame,

|vf |2 = |Ṙ|2

+ 2
µ

M

√
v2i + V 2

i

(
Mvy

i +mV y
i

M+m cosΘ +
Mvz

i +mV z
i

M+m sinΘ
)

+
µ2

M2

(
v2i + V 2

i

)
Averaging the angular terms from Θ ∈ (0, 2π) removes
the angular dependence on the average energy transfer
per scattering.
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C. Continuous total energy loss of heavy DM
particle in the particle regime

Whence the change of energy per scattering of dark
matter particle in the lab frame is obtained as follows.

∆E =
1

2
M
(
v2f − v2i

)
=

1

2
M

(
|Ṙ|2 + µ2

M2

(
v2i + V 2

i

)
− v2i

)
=

1

2
M

[(
Mvi+mVi

M+m

)2
+ µ2

M2

(
v2i + V 2

i

)
− v2i

]
By expanding the terms and regrouping them corre-
sponding to the initial velocities, the energy per scat-
tering is obtained.

∆E =
1

2
M

(
− 2µ2

mM
v2i +

2µ2

M2
V 2
i +

2µ2

mM
vi ·Vi

)
(14)

≈ − mM2

(m+M)2
v2i +

m2M

(m+M)
2V

2
i (15)

This shows a discrepancy to the calculation in Ellis’s
paper[7] by a factor of 2[8]. This resulting expression
is later found to be consistent with the total energy loss
for DM particle multi-scattering process from [9][10].

Considering stellar mass as particles, the total energy
loss of the dark matter particle for n collisions can be
expressed in this form.

∆Etot =
∑
i

(∆E)i (16)

Beginning with the first scattering process,

∆E1 ≈ − mM2

(m+M)2
v2i +

m2M

(m+M)
2V

2
i (17)

=
µ2

mM

(
−Mv2i +mV 2

i

)
(18)

Recall that the energy loss of the incoming DM particle
is also regarded as

∆E1 =
1

2
M
(
v21 − v2i

)
(19)

Here, in order to simplify the expressions, for easy com-
parison, we adopt the convention from [10], which defines
a new parameter as

β± ≡ 4Mm

(M +m)
2 . (20)

Equating the two energy loss per scattering expressions
from (18), (22), the final velocity after this scattering is
expressed in terms of the initial velocities.

v21 =

(
1− β+

2

)
v2i +

2m2

(m+M)
2V

2
i (21)

By generalizing the expression for the change of energy
in intermediate scatterings,

∆Ej =
1

2
M
(
v2j+1 − v2j

)
, (22)

we can further simplify the expression to summing the
total change of energies by noticing that vj is the final
velocity of the (j − 1)-th scattering and is the initial ve-
locity of the (j)-th scattering.
We repeat the above treatment to obtain the magni-

tude of v2j with equating (j)-th equations (18) and (22),
deducing gives

v2j =

(
1− β+

2

)j

v2i +
2m2

(m+M)
2

(
2− β+

2

)j−1

V 2
i (23)

Whence, the total change of energy scattered away of
an incoming DM particle after n collisions is given by

∆Etot =
1

2
M
(
v2n − v2i

)
(24)

=
M

2

((
1− β+

2

)n
v2i +

2m2

(m+M)2

(
2− β+

2

)n−1

V 2
i − v2i

)
(25)

≈ 1

2
Mv2i

[(
1− β+

2

)n

− 1

]
(26)

By assuming the DM particle is much heavier than the

stellar particle, where O
(
(m/M)

2
)
≪ 1. The exact ex-

pression of the total loss of energy for the incoming DM
particle after n-scattering is approximated and simplified.

D. Comments on the total energy loss expression
from recent literature

The expression of continuous scattering energy loss ac-
cording to [10], also allows a probabilistic interpretation,
where the fraction of energy loss in a single scatter is
evenly distributed over the uniform distribution ranging
from |∆E|/Ei ∈ [0, β+].[11] This also gives the average
final energy per scattering as (1 − β+/2)Ei. From this
probabilistic picture, it is realized that

∆Etot = Ef − Ei ≈ Ei

[(
1− β+

2

)n

− 1

]
(27)

, converging to the same expression from our exact ana-
lytical result starting from the COM frame.

IV. METHODOLOGY

Our goal is to trace the encountered DM particle in the
sun following its trajectory under multi-scattering pro-
cesses. For effective numerical integration to obtain the
path traveled by the incoming DM particle, we adopted
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the swifter package written in Fortran[12] which greatly
reduces the computational time for getting particle orbits
around the star of interest using the symplectic fourth-
order T+U method.

By integrating the swifter routine of the swifter, self-
written scattering code following the theoretical back-
ground of the scattering picture from the previous sec-
tions is merged, and our Python module is developed for
single particle scattering. This allows room for the de-
velopment of further parallelization for multi-DM scat-
tering pictures in order to investigate the capture pro-
cess numerically. In the following sections, we will fo-
cus on two main parts, the work to adapt swifter to a
Python-compatible environment, and the self-developed
algorithm for the multi-scattering processes.

A. A brief introduction to Swifter

Swifter is a FORTRAN written software that simu-
lates many-body scattering problems numerically. With
the initialization of the Sun located at the origin, we
can alter the information of planets and the number of
test particles by modifying two of the input files, pl.in
and tp.in respectively. We specify the mass, position,
and velocity of the planets, also the initial conditions
for the test particles, via tuning the integration param-
eters in the text file param.in, and running the exe-
cutable swifter_tu4, the position and velocity informa-
tion of the targeted test particle will be integrated and
encoded in a binary file. By executing another binary
tool_follow, the corresponding resulting binary is then
decoded into a human-readable text file.

Swifter is an integrator that adopts the unit set re-
quiring the gravitational constant G to be unity. Here
we choose the unit set of length in AU , and time in day.

B. Adaptation of swifter

In order to make use of swifter as subroutines, we call
the binaries in our python running environment using the
Python-friendly package of subprocess[13]. The main
goal is to specify our working directory and run our bi-
naries smoothly to output NumPy arrays of any desired
dimension. For each evolution of the incoming DM par-
ticle, we use bash editing to change its corresponding
initial conditions in the input file tp.in and read out the
corresponding numerical values for both the position and
velocities in heliocentric coordinates using solely Python.

To avoid confusion and mixing of input files, for each
evolution, we create a new input file with a file name of a
newly generated hash[14] by duplicating the sample input
file. We then amend the values following the format of
writing the input files, with discriminators as a particular
number of spacing. Since we do not work in the shared
memory /dev/shm directory, it is more memory efficient

to disregard and delete the input and output files from
previous runs before each run starts.
We also notice that the display of certain numbers in

the output text file is mislabelled as a chain of aster-
isks, hence we suspected it was a display malfunction for
FORTRAN and moved on to debug and recompile the
software. The detailed operation can be found in the
public GitHub repository link provided in my abstract.
This adaptation written in python helps us to get the

coordinates and velocities in a shorter computational
time and is a safer means of carrying out symplectic in-
tegration. We will discuss the convergence testing and
sanity checks for continuous input and output files for
subsequent evolution.

C. Scattering algorithm

In our simulation, we assume our Sun is an isotropic
medium, where the density has no radial dependence.
We only assume the isotropic ball has 75% Hydrogen and
25% Helium in terms of atomic composition.
Our scattering algorithm has two main parameters to

vary, one is the DM mass, another is the scattering cross-
section, or in other words, the interaction strength. The
flowchart is shown in Figure (5), which indicates that this
software relies mainly on three while loops. The first
is under the condition of which the DM particle is yet
not captured by the Sun, wrapping the other two while
loops, that force the DM to orbit the Sun until entering
it and scattering through the medium until the energy of
the DM particle is smaller than the escape energy while
being inside the Sun.

FIG. 5: Flowchart of starcode

pl.in
tp.in
param.in
swifter_tu4
tool_follow
subprocess
tp.in
/dev/shm
starcode
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D. Dark Matter Capture Implementation logic

Since we have discussed the swifter implementation in
detail in the previous subsection, we will focus on the
developments made on our own. After being able to
read out the position and velocities in NumPy arrays,
we move to check if the particle is inside the star and
whether the DM particle has sufficient energy to escape.
Fulfilling both being in the star and the particle having
speed smaller than the escape velocity (magnitude), we
conclude the dark matter is being captured.

For initialization, we randomly pick a velocity under
the Maxwell-Boltzmann distribution curve. With the
knowledge that the number flux of DM particles on a
star, according to Ellis[7], follows

ΦDM = πR⊙nDM

∫
d3vf(v⃗)v

(
1 +

v2esc
v2

)
(28)

, where f(v⃗) is the Maxwellian velocity distribution, nDM

denotes the number density of DM and v is the velocity
of the DM particles.

1. Restoring statistics of Maxwell-Boltzmann distribution
for DM particle velocities

Our work to obtain the velocity for a DM particle un-
der a Maxwell-Boltzmann distribution

f(v⃗) =

√( m

2πkT

)3
4πv2e−

mv2

2kT (29)

is based on a mathematical technique called Box-Muller
transform, where each axis velocity element should sat-
isfy the scaled gaussian distribution as Maxwellian is.

Using Box-Muller transform, we transform uniformly
distributed independent random variables x1, x2 to a
standard normal distribution variable y by

y =
√
−2 lnx1 cos (2x2) . (30)

We then obtain the velocity components by multiply-
ing the variable y to a scaling factor dependent on the
particle energy

vi =

√
kT

m
× y (31)

, note that we use natural units in our calculations i.e.
G = c = ℏ = k = 1.

After initialization, we move on the give the DM parti-
cle an initial kick with the initial Box-Muller transformed
velocity so that it evolves using swifter, looping until it
enters the Sun. Once it enters the sun, we record the po-
sition and velocity upon encounter, and we visualize the
entry point for sanity-checking purposes. We then move
on to the last while loop mentioned a few paragraphs ago.

2. Energy change in a probabilistic picture

After entering the Sun, we make use of our cross-
section of interest and evaluate it according to the
mean free path upon scattering as derived in Equation
(1). We implement the bounded uniform distribution of
|∆E|/Ei ∈ [0, β+] giving us both possibilities of incom-
ing DM particle gain and loss energy via scattering with
the stellar medium. Therefore, this yields final energy
upon scatter, and we simply promote our drawn mean
free path, from a uniform distribution of λ ∈ [0, 2ℓχ] s.t.
the average gives λ̄ = ℓχ, from the position upon entry
to a randomized direction of a magnitude of drawn mean
free path.

3. Randomization of directions after scattering

The randomization of both velocity and position di-
rections (unit vectors) are identical after each scatters
according to Figure (3). This randomization relies on
the background that any vectors are projected according
to the unit vector orientations. In this work, we chose to
generate two independent random numbers u, v both in
the range of [0, 2π] s.t. the projected quantities are given
by

r = |r|
(
cosu sin v , sinu sin v , cos v

)
(32)

E. Visualization

In this subsection, we wish to include the technique
and development highlights to visualize this simulation.
From Figure (6) and (7), we obtained information for

FIG. 6: DM trajectory emphasized the first encounter
position at the Sun surface with complete orbit

the incoming DM particle upon entry for orbits that ex-
ceeded our amount of use where after entry, the numer-
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FIG. 7: DM trajectory emphasized the first encounter
position at the Sun surface with orbit only before

encounter

ical values are kept. However, since we would like to
observe the whole orbiting and scattering process where
we disabled visualizing the orbit position after entry to
avoid confusion. In Figure (8), we observe one scatter-

FIG. 8: DM trajectory emphasized the first encounter
position at the Sun surface with orbit motions and

scattering

ing event of the DM being scattered 6 times with cross-
section σc = 5.95 × 10−35cm2 and escaping through the
Sun’s surface. This illustrates our visualization is made
very human-friendly for inspecting the simulation results.

V. RESULTS AND DISCUSSION

In this work, we successfully simulated single dark mat-
ter capture events with the implemented logic mentioned

in the previous section. In this section, we will discuss
several dark matter capture events.

A. Monte Carlo simulation features

By fixing the initial position and velocity for the first
kick, we can observe different scattering events more
closely, we intentionally chose a relatively small veloc-
ity so that it gets captured in a few scattering events.

FIG. 9: Type I: Captured dark matter after one scatter
event, with σc = 5.95× 10−35cm2 and m = 1000GeV

FIG. 10: Type II: Captured dark matter after multiple
scatter events, with σc = 5.95× 10−35cm2 and

m = 1000GeV

From the results in Figure (9), and (10), we can see
the Monte Carlo simulation property of the randomized
results is displayed with fixed initial conditions. Types
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of results can be shown to be captured within one scatter
event and in several scatter events.

B. Scattering times per scattering events and
cross-section

FIG. 11: Dark matter escaped in one scattering event
which scattered 4 times, σc = 1.84× 10−34cm2 and

m = 1000GeV

FIG. 12: Dark matter escaped in one scattering event
which scattered 17 times, σc = 1.84× 10−34cm2 and

m = 1000GeV

From a very little sample size, we observe that DM
scatters more times per scattering event before leav-
ing the Sun when we have larger values of the cross-
section. This makes sense since larger cross-sections
mean stronger interaction strength between the incom-
ing DM particle and stellar particles.

C. Convergence and sanity checking

In this section, we look into the sanity checkings we
performed to ensure our simulation results matches our
expectations.

1. Swifter: I/O continuity of subsequent runs

Since we amend the input files every iteration to obtain
one revolution, it is our baseline to ensure that the next
revolution picks up the final kinematic information cor-
rectly and continues propagating. Figure (13) shows that

FIG. 13: Dark matter trajectory about the Sun as
continuous, gap-less propagation

the DM trajectory is continuous and propagates from the
previous position to the next. Here we ensured each Ke-
plerian iteration is physical.

2. Continuous Keplerian orbits with encounter and without
encounter

In this subsection, we wish to check if the orbits are
symplectic, continuous, and reasonable after our modifi-
cation of logic for the software to tell if the DM particle
enters the Sun.
For closed orbits which the DM particle does not enter

the Sun,
from Figure (14), the orbits completely overlap with one
another implies the integration done by swifter is indeed
energy-conserving. The second point to check here is, not
entering the Sun, the DM particle can never lose energy
in any other way, which makes the DM particle unable
to enter the Sun forever.
In Figure (15), we observe a successful run for a DM

particle to continue one’s trajectory until encountering
the Sun, which is the second swifter iteration here.
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FIG. 14: Dark matter continuous symplectic path as
closed orbits

FIG. 15: Dark matter particle encounter on second
swifter run

3. Convergence testing

The last test to check is whether swifter shows conver-
gence upon reduction of integration step size. In order
to carry out the convergence test, we find the variable
r which is the radius of a circular orbit around the Sun,
which is a stable fixed parameter as shown in Figure (16).
By fixing the DM initial conditions identical to the ve-
locity of the Earth, we evaluate the fluctuation for inte-
gration with bigger step size and obtained the graph of
Figure (17).
From Figure (17), reading from large values of dt to
smaller ones, we see the amplitude of fluctuations de-
creases rapidly, passing our convergence test.

FIG. 16: Dark matter escaped in one scattering event
which scattered 17 times, σc = 1.84× 10−34cm2 and

m = 1000GeV

FIG. 17: Dark matter escaped in one scattering event
which scattered 17 times, σc = 1.84× 10−34cm2 and

m = 1000GeV

VI. ISSUES AND IMPROVEMENTS

One main improvement to be made is rewriting or hav-
ing a FORTRAN wrapper in Python. This is the means
that allow efficient parallelization to be done when it
comes to multi-particle scattering. Another improvement
we have in mind is to disable the stdout from the origi-
nal swifter program since printing out the parameters for
integration for every orbit event is time-consuming.

VII. CONCLUSION AND FUTURE WORK

In this work, we reviewed the theoretical DM scatter-
ing in the particle regime and re-derived the expression
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for total energy loss upon continuous scattering which
converges with the recent literature results. We also
showed successful dark matter trapping events by em-
ploying the modified swifter software and passed relevant
sanity checks successfully.

In the future, we wish to further improve our software
and investigate the thermalization time and hopefully
could gather enough data to look into the relationship
between interaction strength and dark matter mass. We
also hope to further upgrade our code to allow paral-
lelization in order to perform multi-DM multi-scattering
on clusters. We also hope to extend this pipeline to a
number of known astrophysical bodies, by obtaining im-
portant quantities such as the scattering cross sections to
dark matter mass relationships, we can further identify
our most optimal targets which cover a range of interac-
tion models for dark matter.
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